Structure of Bis- μ-[bis(diphenylphosphino)methane]-bis(chloroplatinum) (Pt-Pt)

By Lj. Manollović-Muir,* K. W. Muir and T. Solomun
Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland

(Received 25 January 1979; accepted 26 February 1979)

Abstract

C}_{50} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Pt}_{2},\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2} \mathrm{Cl}_{2}\right], M_{r}=\) 1229.9, monoclinic, $P 2_{1} / c, a=13.592$ (3), $b=$ 16.577 (10), $c=21.439$ (4) $\AA, \beta=105.63$ (2) ${ }^{\circ}, U=$ $4652 \AA^{3}, Z=4, D_{c}=1.756 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Мо $K \alpha)=6.4$ $\mathrm{mm}^{-1} ; R=0.086$ for 4307 independent reflections. The crystal structure is built from binuclear molecules, which contain two $\mathrm{Pt}-\mathrm{Cl}$ fragments linked to one another by a $\mathrm{Pt}-\mathrm{Pt}$ bond and by two bridging bis(diphenylphosphino)methane ligands. The Pt atoms are in square-planar environments and the angle between the two coordination planes is 38.6°. Selected bond lengths are: $\mathrm{Pt}-\mathrm{Pt} 2.651$ (1), $\mathrm{Pt}-\mathrm{Cl} 2.401$ (5) and 2.408 (5), and Pt-P 2.250 (7)-2. 294 (7) \AA.

Introduction. The Pt^{1} complex $\left[\{\mathrm{PtCl}(\mu-\mathrm{dppm})\}_{2}\right]$, where $\mathrm{dppm}=$ bis(diphenylphosphino)methane, was first obtained and characterized spectroscopically by

* To whom correspondence should be addressed.

Glockling \& Pollock (1972, 1974), who assigned it a Cl -bridged structure, and later by Brown, Puddephatt \& Rashidi (1976) and Brown, Puddephatt, Rashidi \& Seddon (1977), who proposed a dppm-bridged structure. The work reported here establishes that the latter structure is correct, as briefly noted elsewhere (Brown, Puddephatt, Rashidi, Manojlović-Muir, Muir, Solomun \& Seddon, 1977).

Measurements were made on a Hilger \& Watts Y290 diffractometer with graphite-monochromated Mo Ka radiation ($\lambda=0.71069 \AA$). The analysis was based on 4307 unique reflections with $2 \leq \theta \leq 30^{\circ}$ and $I \geq$ $3 \sigma(I)$, where $\sigma(I)$ is derived from counting statistics. Corrections were applied for Lorentz-polarization effects and for variations in intensities of two periodically remeasured standard reflections.
The structure was solved by the heavy-atom method and refined by block-diagonal least squares. Scattering

Table 1. Fractional atomic coordinates $\left(\times 10^{3}\right)$

	x	y	z		x	y	z
$\mathrm{Pt}(1)$	289.76 (6)	63.08 (6)	236.40 (4)	C(22)	382 (2)	-110(2)	435 (2)
$\mathrm{Pt}(2)$	95.31 (6)	75.84 (5)	170.05 (4)	C(23)	383 (3)	-87(3)	501 (2)
$\mathrm{Cl}(1)$	467.4 (4)	54.6 (6)	295.3 (3)	C(24)	332 (3)	-22 (3)	510 (2)
$\mathrm{Cl}(2)$	-77.3 (4)	$83 \cdot 3$ (5)	103.1 (3)	C(25)	296 (3)	31 (2)	459 (2)
P (1)	329.4 (4)	25.6 (4)	$143 \cdot 1$ (3)	C(26)	395 (3)	199 (3)	395 (2)
P (2)	249.8 (4)	89.9 (4)	$330 \cdot 2$ (3)	C(27)	421 (3)	280 (3)	426 (2)
$\mathrm{P}(3)$	51.3 (4)	21.9 (4)	255.5 (3)	C(28)	358 (2)	333 (2)	430 (2)
$\mathrm{P}(4)$	$156 \cdot 8$ (4)	$135 \cdot 2$ (4)	93.9 (3)	C(29)	253 (2)	323 (2)	406 (1)
C(1)	237 (2)	63 (2)	66 (1)	C(30)	216 (2)	247 (2)	373 (1)
C(2)	113 (2)	90 (2)	324 (1)	C(31)	-120 (3)	82 (2)	296 (2)
C(3)	342 (2)	-83 (2)	135 (1)	C(32)	-227 (3)	70 (3)	295 (2)
C(4)	446 (2)	65 (2)	131 (1)	C(33)	-289 (2)	34 (2)	252 (2)
C(5)	305 (2)	14 (2)	397 (1)	C(34)	-254 (2)	-19(2)	216 (2)
C(6)	285 (2)	190 (2)	369 (1)	C(35)	-149 (2)	-22 (2)	214 (1)
$\mathrm{C}(7)$	-85 (2)	25 (2)	256 (1)	C(36)	39 (3)	-123 (2)	320 (2)
C(8)	88 (2)	-85 (2)	279 (1)	C(37)	67 (3)	-206 (2)	337 (2)
C(9)	240 (2)	226 (2)	118 (1)	C(38)	138 (2)	-240 (2)	314 (2)
C(10)	66 (2)	171 (2)	17 (1)	C(39)	184 (4)	-205 (2)	273 (1)
C(11)	296 (2)	-127 (2)	79 (1)	C(40)	158 (2)	-121 (2)	254 (1)
$\mathrm{C}(12)$	304 (2)	-206 (2)	77 (1)	C(41)	254 (2)	258 (2)	181 (1)
C(13)	358 (3)	-251(2)	128 (2)	C(42)	325 (3)	323 (2)	199 (2)
C(14)	404 (2)	-205 (2)	187 (2)	C(43)	372 (2)	354 (2)	156 (2)
C(15)	398 (2)	-127 (2)	191 (1)	C(44)	360 (2)	324 (2)	96 (1)
C(16)	498 (2)	27 (2)	90 (1)	C(45)	291 (2)	256 (2)	75 (1)
C(17)	582 (2)	63 (2)	77 (2)	C(46)	39 (2)	249 (2)	11 (1)
C(18)	617 (2)	141 (2)	102 (1)	C(47)	-29 (2)	278 (2)	-52 (2)
C(19)	569 (2)	178 (2)	142 (1)	$\mathrm{C}(48)$	-59 (2)	219 (2)	-101 (1)
$\mathrm{C}(20)$	485 (2)	143 (2)	157 (1)	$\mathrm{C}(49)$	-28(2)	139 (2)	-92(1)
C(21)	346 (2)	-48 (2)	385 (1)	C(50)	35 (2)	111 (2)	-30 (1)

Table 2. Selected interatomic distances (\AA) and

$\begin{array}{ll} \mathrm{Pt}(1)-\mathrm{Cl}(1) & 2 \cdot \\ \mathrm{Pt}(1)-\mathrm{P}(1) & 2 . \end{array}$	8 (5) Pt	$\mathrm{Pt}(2)-\mathrm{Cl}(2) \quad 2.4$	2.401 (5)
	(7) Pt	$\mathrm{Pt}(2)-\mathrm{P}(3) \quad 2.25$	(7)
$\mathrm{Pt}(1)-\mathrm{P}(2) \quad 2.264(7) \quad \mathrm{P}$		$\mathrm{Pt}(2)-\mathrm{P}(4) \quad 2.250$ (7)	
$\mathrm{Pt}(1)-\mathrm{Pt}(2) \quad 2.651$ (1)			
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	175.6(2) P	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{P}(4)$	172.9 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$	178.5 (2) C	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$	175.7 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	90.2 (2) C	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{P}(3)$	94.3 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	89.6 (2) C	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{P}(4)$	92.2 (2)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$	89.3 (2) Pt	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{P}(3)$	88.7 (2)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)$	91.0 (2) Pt	$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{P}(4)$	85.0 (2)
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	114.4 (8) Pt	$\mathrm{Pt}(2)-\mathrm{P}(3)-\mathrm{C}(2)$	103.8 (8)
$\mathrm{Pt}(1)-\mathrm{P}(2)-\mathrm{C}(2)$	114.4 (8) Pt	$\mathrm{Pt}(2)-\mathrm{P}(4)-\mathrm{C}(1)$	108.7 (8)
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(4)$	104.5 (12) P	$\mathrm{P}(2)-\mathrm{C}(2)-\mathrm{P}(3)$	$107 \cdot 2$ (13)
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(1)$		1) $\quad 25.4$ (9)	
$\mathrm{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(4)$		(11(1)	
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(4)-\mathrm{Pt}(2)$		-52(1)	
$\mathrm{C}(1)-\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$		1) $\quad 61.6$ (9)	
$\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$		1) -42.4 (2)	
$\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)-\mathrm{C}(2)$		2) $10 \cdot 2(9)$	
$\mathrm{Pt}(1)-\mathrm{P}(2)-\mathrm{C}(2)-\mathrm{P}(3)$		27(1)	
$\mathrm{P}(2)-\mathrm{C}(2)-\mathrm{P}(3)-\mathrm{Pt}(2)$		-58(1)	
$\mathrm{C}(2)-\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{Pt}(1)$		1) $\quad 56.2(8)$	
$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{Pt}(1)-\mathrm{P}(2)$		(2) -34.7(2)	

factors, and anomalous-dispersion corrections for Pt , Cl and P , were taken from International Tables for X ray Crystallography (1974). The refinement, with anisotropic thermal vibrations for Pt, Cl and P atoms only, converged at $R=0.086$ and $R^{\prime}=0.108$. No allowance was made for the H atoms.

The final atomic coordinates and selected bond lengths and angles are presented in Tables 1 and 2.* The computer programs were those listed by Caldwell, Manojlović-Muir \& Muir (1977).

Discussion. The crystal structure is built from discrete binuclear molecules separated by van der Waals contacts.

The molecular structure, shown in Fig. 1, comprises two $\mathrm{Pt}-\mathrm{Cl}$ fragments linked directly through a metalmetal bond and bridged by two dppm ligands. The conformations of the ligands are similar and the molecule therefore approximates to C_{2} symmetry, the diad axis coinciding with an essentially linear $\mathrm{Cl}-\mathrm{Pt}-$ $\mathrm{Pt}-\mathrm{Cl}$ unit.

The geometry of the dppm ligands reflects their ability to rotate internally about each of the two methylene $\mathrm{C}-\mathrm{P}$ bonds (Cotton \& Troup, 1974). Thus the conformations about $\mathrm{C}(1)-\mathrm{P}(4)$ and $\mathrm{C}(2)-\mathrm{P}(3)$ are practically staggered, the $\mathrm{P}-\mathrm{C}-\mathrm{P}-\mathrm{Pt}(2)$ torsion angles

[^0]

Fig. 1. A view of the molecular structure of $\left\{\{\mathrm{PtCl}(\mu \text {-dppm })\}_{2}\right]$. The vibrational ellipsoids of the Pt, Cl and P atoms display 50% probability. For clarity, all C atoms are represented by circles of arbitrary size; they are labelled by numbers only, corresponding to those listed in Table 1.
being -52 (1) and $-58(1)^{\circ}$, while those about $\mathrm{C}(1)-$ $P(1)$ and $C(2)-P(2)$ are closer to eclipsed, the $P-C-$ $\mathrm{P}-\mathrm{Pt}(1)$ torsion angles being 11 (1) and $27(1)^{\circ} . \mathrm{P}(1)-$ $\mathrm{C}(1)$ and $\mathrm{P}(2)-\mathrm{C}(2)$ are nearer to eclipsing the $\mathrm{Pt}(1)-$ $\mathrm{Pt}(2)$ vector than are $\mathrm{P}(3)-\mathrm{C}(2)$ and $\mathrm{P}(4)-\mathrm{C}(1)$, as is apparent from the $\mathrm{Pt}-\mathrm{Pt}-\mathrm{P}-\mathrm{C}$ torsion angles of $25.4(9), 10 \cdot 2(9), 56 \cdot 2(8)$ and $61.6(9)^{\circ}$ respectively (Table 2). Such conformational differences lead to variations in the $\mathrm{Pt}-\mathrm{P}-\mathrm{CH}_{2}$ angles, which are larger at $P(1)$ and $P(2)$ than at $P(3)$ and $P(4)$ (Table 2). The bond lengths and angles within the dppm ligands are unexceptional. The mean $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances are 1.85 (1) and 1.39 (1) \AA.

The coordination geometry around the Pt atoms is square-planar with small tetrahedral distortions, which are evident from the bond angles subtended at the Pt atoms (Table 2), and also from the displacements of atoms from the two $\mathrm{Pt}_{2} \mathrm{P}_{2} \mathrm{Cl}$ coordination planes. These displacements do not exceed $0.13 \AA$.
$\operatorname{Pt}(1)-\operatorname{Pt}(2)[2.651(1) \AA]$ is somewhat shorter than the $\mathrm{Pd}-\mathrm{Pd}$ bond $[2.699$ (5) \AA] in the isomorphous and isostructural $\left[\{\operatorname{PdBr}(\mu-\mathrm{dppm})\}_{2}\right]$ analogue (Holloway, Penfold, Colton \& McCormick, 1976). In the few other Pt^{1} complexes examined so far the $\mathrm{Pt}-\mathrm{Pt}$ distances are 2.581 (4)-2.647 (2) \AA (Brown, Puddephatt, Rashidi, Manojlović-Muir, Muir, Solomun \& Seddon, 1977).
The $\mathrm{Pt}-\mathrm{Cl}$ lengths $[2.401$ (5) and $2.408(5) \AA$] are similar to those in $\left[\left\{\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}_{2}\right\}_{2}\right]^{2-}[2.382$ (10) and 2.426 (9) \AA] (Modinos \& Woodward, 1975). They are close to the upper end of the range of $\mathrm{Pt}-\mathrm{Cl}$ distances in square-planar Pt^{11} complexes (Manojlović-Muir \& Muir, 1974), and may suggest a relatively high trans influence of the $\mathrm{Pt}-\mathrm{Pt}$ bond. The $\mathrm{Pt}-\mathrm{P}$ distances
[2.250 (7)-2.294 (7) A] are comparable with those $[2.291(5)-2.308(5) \AA]$ in $\left[\mathrm{Pt}_{2}(\mathrm{CO}) \mathrm{Cl}(\mu-\mathrm{dppm})_{2}\right]$ (Manojlović-Muir, Muir \& Solomun, 1979).

Perhaps the most interesting structural feature is the twisted configuration of the molecule as a whole. The two $\mathrm{Pt}_{2} \mathrm{P}_{2} \mathrm{Cl}$ coordination planes are mutually rotated about $\operatorname{Pt}(1)-\mathrm{Pt}(2)$ to afford a dihedral angle of $38 \cdot 6^{\circ}$. This, however, leads to only slight angular distortions in the $\mathrm{Pt}_{2} \mathrm{P}_{2} \mathrm{C}$ rings (see above). Thus the flexibility of the dppm ligands allows the molecule almost to minimize any antibonding interactions between filled interaxial d orbitals of the metal atoms. In the Pt^{1} anion $\left[\left\{\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}_{2}\right\rangle_{2}\right]^{--}$, where the constraint of the bridging groups is not present, the corresponding dihedral angle is $c a 60^{\circ}$; this has been interpreted as a compromise between the tendency of the filled interaxial metal d orbitals to be positioned as far from one another as possible (dihedral angle 45°) and the tendency of the ligands attached to the adjacent metal atoms to minimize their steric repulsions (dihedral angle 90°) (Modinos \& Woodward, 1975).

We thank Dr R. J. Puddephatt for the crystals and the University of Glasgow for a studentship (to TS).

References

Brown, M. P., Puddephatt, R. J. \& Rashidi, M. (1976). Inorg. Chim. Acta, 19, L33-L34.
Brown, M. P., Puddephatt, R. J., Rashidi, M., Manojlović-Muir, Lj., Muir, K. W., Solomun, T. \& Seddon, K. R. (1977). Inorg. Chim. Acta, 23, L33-L34.
Brown, M. P., Puddephatt, R. J., Rashidi, M. \& Seddon, K. R. (1977). J. Chem. Soc. Dalton Trans. pp. 951-955.

Caldwell, A. N., Manojlović-Muir, Lj. \& Muir, K. W. (1977). J. Chem. Soc. Dalton Trans. pp. 2265-2269.

Cotton, F. A. \& Troup, J. M. (1974). J. Am. Chem. Soc. 96, 4422-4427.
Glockling, F. \& Pollock, R. J. I. (1972). J. Chem. Soc. Chem. Commun. p. 467.
Glockling, F. \& Pollock, R. J. I. (1974). J. Chem. Soc. Dalton Trans. pp. 2259-2261.
holloway, R. G., Penfold, B. R., Colton, R. \& McCormick, M. J. (1976). J. Chem. Soc. Chem. Commun. pp. 485-486.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Manojlović-Muir, Lu. \& Muir, K. W. (1974). Inorg. Chim. Acta, 10, 47-49.
Manojlović-Muir, Lj., Muir, K. W. \& Solomun, T. (1979). Unpublished work.

Modinos, A. \& Woodward, P. (1975). J. Chem. Soc. Dalton Trans. pp. 1516-1520.

Acta Cryst. (1979). B35, 1239-1241

Structure of (Chloromercurio)acetaldehyde

By Joan Halfpenny* and R. W. H. Small Department of Chemistry, The University, Lancaster LA 1 4YA, England

(Received 1 February 1979; accepted 26 February 1979)

Abstract

C}_{2} \mathrm{H}_{3} \mathrm{ClHgO}, \mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right) \mathrm{Cl}\), triclinic, $P \overline{1}$, $a=8.147$ (8), $b=6.377$ (6), $c=4.511$ (4) $\AA, a=$ 92.0 (1), $\beta=81.3$ (1), $\gamma=101.6(1)^{\circ}, D_{c}=4.09 \mathrm{Mg}$ $\mathrm{m}^{-3}, Z=2$; final $R=0.030$ for 484 diffractometermeasured intensities (Mo Ka, $\lambda=0.7107 \AA$). Hg is coordinated to $\mathrm{Cl}[\mathrm{Hg}-\mathrm{Cl}=2.326$ (6) $\AA]$ and to C $[\mathrm{Hg}-\mathrm{C}=2 \cdot 11$ (2) \AA] with the angle $\mathrm{Cl}-\mathrm{Hg}-\mathrm{C}=$ $172 \cdot 2(5)^{\circ}$, and also to O of c-related and centrosymmetrically related molecules $[\mathrm{Hg}-\mathrm{O}=2.87$ (1) and 2.84 (2) \AA respectively]. There is also an intermolecular $\mathrm{Hg} \cdots \mathrm{Cl}$ contact at 3.370 (6) \AA.

Introduction. The title compound was supplied by Dr F. G. Thorpe, and had been prepared by the method of Makarova \& Nesmayanov (1967). The crystals, used

^[* Present address: School of Chemistry, Brunel University, Uxbridge, England.]

0567-7408/79/051239-03\$01.00
without further recrystallization, were thin laths twinned about b; with care the twins could be separated. The cell dimensions were obtained from Weissenberg photographs taken with $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.5418$ \AA); the crystal density was not measured as it was too high for the flotation method and the compound was not available in sufficient quantity for an alternative method. Intensities were collected on a Stoe STADI-2 automatic two-circle diffractometer with graphitemonochromatized Mo $K \alpha$ radiation. Although decomposition of the crystals occurred continuously under irradiation, it was sufficiently slow to permit all measurements to be made with one crystal with dimensions $0.31 \times 0.03 \times 1.13 \mathrm{~mm}$. Of 537 intensities measured within the range $2 \theta=4-40^{\circ}, 484$ had $I>$ $3 \sigma(I)$ and were used for the structure determination. Absorption corrections ($\mu=33.095 \mathrm{~mm}^{-1}$) were applied with SHELX (Sheldrick, 1976), which was also

[^0]: * Lists of structure factors, thermal parameters and all bond lengths, bond angles and torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34294 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

